关于java中对数的计算

最近为了计算文档间的相关性需要用到对数的计算,在网上找到下面的方法:
其中的关键是:1 java标准包提供了自然对数的计算方法,2 其他的对数计算可以转换为自然对数的计算。

下面是转贴:但不知道谁是原创作者。
后来搜索到这个连接:http://www.cs.utsa.edu/~wagner/laws/ALogs.html
还是人家有专业精神:
下面是他的描述:
 Java supplies a function to calculate natural logs, base e = 2.718281828459045. To calculate logs to other bases, you need to multiply by a fixed constant: for a log base b multiply by 1/logeb


  Sun的J2SE提供了一个计算自然对数方法——double java.lang.Math.log(double)。请看如下代码:
  double x = Math.log(5);
  等价于下面的数学方程:
  x = ln 5
  或
  x = loge5
  其中e是内皮尔数或自然数。


  如果你想算底不同的对数又该如何做呢?很遗憾,我们还没有办法计算以10为底或以2为底的对数。
    但是它们却是在计算对数时用的最多的。
    要想解决这个问题,我们就要回想曾经在学校里学过的数学和对数方程:
  logx(y) =loge(x) / loge(y)
  这只需一段简单的Java程序来实现:
  public class Logarithm {
       static public double log(double value, double base) {
       return Math.log(value) / Math.log(base);
       }
  }
  计算100的以10为底的对数就变为非常简单了:
  double log = Logarithm.log(100, 10); // log is 2.0
  512的以2为底的对数是:
  double log = Logarithm.log(512, 2); // log is 9.0
  下面的两个简单的方法也都是很有用的:
  static public double log2(double value) {
   return log(value, 2.0);
   }
   static public double log10(double value) {
   return log(value, 10.0);
   }



----------------
SciMark 基准由许多在科学计算应用中建立的通用计算要素组成,在内存访问浮点运算方面各自处理不同的行为模式。这些要素是:快速傅立叶转换(FFT)、连续 松弛迭代(SOR:Over-Relaxation iterations)、用于复杂线性系统的解决方案的蒙特-卡罗积分、稀疏矩阵乘法和稠密矩阵分解(LU) 。
  SciMark 最初用 Java 开发(
http://math.nist.gov/scimark),后来被 Chris Re 和 Wener Vogels 移植到 C#(http://math.nist.gov/scimark
)。注意这个实现没有使用不安全代码,这会使它运行速度提高 5 至 10 个百分点。

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页